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Chapter 1

Introduction

This is the final project of Finn 6211, with the intention of getting comfortable with spot rate data, their
relation to yield curve factors, and various hedging strategies.

The entire analysis, including the code and the report, can be found at https://github.com/DavisVaughan/
final-project-book. An HTML version of the report is hosted at http://final-project-finn-6211.davisvaughan.
com/, and may be preferable to the PDF version, which can be found at http://final-project-finn-6211.
davisvaughan.com /final-project-book.pdf.

An R package has been created to accompany the report. It contains a number of helper functions for
cleaning data, manipulating the time series, and creating the hedging strategies. The package is named
ratekit and can be found on GitHub at https://github.com/DavisVaughan/ratekit.

The structure of the report is as follows. Chapter 2 is dedicated to retrieving and cleaning the data. Chapter
3 is focused on the calculation of features used in the questions. Chapters 4, 5, and 6 answer the three
questions required in the report.

The code used to create the analysis is split into two places. In the R/ folder of the attached zip file are the
files used for downloading the data, cleaning it, and creating the fixed income features. The actual analysis
and answering of the questions is done inside the .Rmd files found in the top level of the zip file.

This report was written with bookdown, a book authoring package for R.


https://github.com/DavisVaughan/final-project-book
https://github.com/DavisVaughan/final-project-book
http://final-project-finn-6211.davisvaughan.com/
http://final-project-finn-6211.davisvaughan.com/
http://final-project-finn-6211.davisvaughan.com/final-project-book.pdf
http://final-project-finn-6211.davisvaughan.com/final-project-book.pdf
https://github.com/DavisVaughan/ratekit
https://bookdown.org/yihui/bookdown/

Chapter 2

Data

2.1 Data Retrieval

The data is retrieved from the Federal Reserve website, under the discussion series: The U.S. Treasury
Yield Curve: 1961 to the Present. The link for that site is: https://www.federalreserve.gov/pubs/feds/2006/
200628/200628abs.html. The specific data set downloaded was the XLS file included on the site. ratekit
provides the download_rates_x1s() helper function for this.

The data was immediately opened in Excel, and resaved as an x1lsx file. The format of the raw data is
not a true x1s file, rather, it is some flavor of an xml file. This does not play nicely with R’s packages for
importing Excel data, so a resave was necessary and is done manually.

2.2 Cleaning

Data is brought into R using the readxl package and the ratekit helper, read_rates(). This function sets
any -999.99 values to NA. These are often found through the dataset, especially in the parameters columns,
and it is assumed that they represent missing values.

The column names in the data correspond to different types and lengths of rates used in the paper, along
with the names of the parameters in the model. The key for understanding the column names is shown in
Table 2.1.

Table 2.1: Rates data: Column key

Series Compounding Convention  Key
Zero-coupon yield Continuously Compounded SVENYXX

Par yield Coupon-Equivalent SVENPYXX
Instantaneous forward rate Continuously Compounded SVENFXX
One-year forward rate Coupon-Equivalent SVEN1FXX
Parameters NA BETAO to TAU2

Most of these columns are not important for this analysis. Only the parameter columns and the date column
are kept. To further examine the missing values, the skimr package was used, producing the report shown
below. The TAU2 column has a number of missing values (resulting from either being missing or from being
-999.99 values assumed to be missing). All of them occur before 1980, and were removed from the data set.
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2.3. MONTHLY AND ASCENDING )

After that removal, no missing values remain, and the values for the other parameters seemed to stabilize as
well.

Skim summary statistics
n obs: 14163
n variables: 7

Variable type: Date

variable missing complete n min max median n__unique

date 0 14163 14163  1961-06-14 2018-03-29 1989-11-10 14163

Variable type: numeric

variable missing complete n mean sd pO P25 p50 P75 p100
BETAO 0 14163 14163 5.88 4.63 0 3.03 5.01 7.92 25
BETA1 0 14163 14163 -0.82 5.05 -39.73 -3.07 -1.02 141 97.18
BETA2 0 14163 14163 -341.06 5684.56 -340683.77 -9.02 -0.99 1.93 94.87
BETA3 0 14163 14163 343.72  5684.31 -104.03 0 3.72 18.81  340681.5
TAU1 0 14163 14163 2.39 3.37 0.1 0.63 147  2.65 30
TAU2 4620 9543 14163 8.97 7.64 0.1 3.52 894 13.06 180.86

2.3 Monthly and Ascending

Monthly data is required for the report, but daily data is provided from the Federal Reserve data set. The
data is converted to monthly (end-of-month) using the tibbletime package. This leaves 459 rows of data
for the project, spanning 1980-01-31 to 2018-03-29.



Chapter 3

Fixed Income Features Calculations

In this chapter, the construction of spot rates, zero coupon bond prices, excess returns, and yield factors are
discussed. These features are used in hedging strategies and for general exploration of the data in Chapters
4-5, so only the implementation is discussed here.

3.1 Spot Rates

Spot rates series can be constructed from the 6 parameters in the cleaned Federal Reserve data set. The
following formula is used to construct the spot rates. It is integrated form of the Svensson extension of the
Nelson and Siegal approach to calculating instantaneous forward rates. Svensson added a second hump term
to the model that Nelson and Siegal created. Integrating the instantaneous forward rates gives us the spot
rates.

ye(n) = Bo.
1—exp(—=2)
+ B¢ — Tt
T
1- eXP(*TL) n
+ B2t T —exp(——)]
Ti Tt
1 —exp(—=2) n
+ B34 T — exp(——)]
T2,t

Spot rates are examined in detail in Chapter 4, but Figure 3.1 provides a quick look at the major ones. As
expected, longer maturity spot rates are consistently higher than short term spot rates. The 1980’s were a
time of incredibly high interest rates, and in recent years rates have been incredibly low.
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3.2. ZERO COUPON BOND PRICES 7
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Figure 3.1: Spot rates at various maturities from 1980 onward.

3.2 Zero Coupon Bond Prices

N-year zero coupon bond prices can be calculated easily from their corresponding spot rates. The following
formula is used to represent the relationship between the two series.

Pi(n) = exp(—ys(n) x n)

Zero prices, by design, exhibit an inverse relationship to spot rates. The impact of the high interest rates
in the 1980’s can be seen clearly in Figure 3.2, with a large price spread between the short and long term
maturity zeroes.
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Figure 3.2: Zero prices at various maturities from 1980 onward.



CHAPTER 3. FIXED INCOME FEATURES CALCULATIONS

3.3 One Month Returns

The time ¢t + A return on an n-year bond is defined as:

o Pt_;'_A(n*A)

RET, aA(n) = 0 ~1

Using the zero coupon bond prices from Section 3.2, it is straightforward to calculate returns. Care must be
taken to align the price from next month’s n— A maturity bond with today’s n maturity bond, but otherwise

the procedure is simple.

The distribution of 1-month (A

= 1/12) returns is shown in Figure 3.3. As seen in both the figure and

Table 3.1, higher maturity zeros have both larger average returns and more variance. In general, this is
unsurprising, and the drop in standard deviation is roughly linear as the maturity decreases.
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Figure 3.3: Return distributions for various maturities.

Table 3.1: Summary statistics of zero coupon bond returns since the 1980’s.

Maturity — Average Return

Standard Deviation

1
3
5
7
10

0.0044510 0.0056046
0.0055643 0.0125839
0.0064662 0.0188464
0.0072532 0.0250410
0.0083056 0.0343082

3.4 Excess Returns

Excess returns are calculated over the 1 month treasury, specifically:

ERt+A (TL) = RET,H_A (TL) - RETtJ’_A (A)



3.5. YIELD CURVE FACTORS 9

with A = 1/12. Excess returns are only calculated for n = 1,3,5,7,and 10 year zeros.

The implementation of this is straightforward since returns for all maturities have already been calculated.
Excess returns show a similar distribution as returns, just shifted downwards by the 1-month treasury return.

3.5 Yield Curve Factors

Finally, the yield curve factors, level, slope, and curvature are calculated as:

Level = y;(1/4)
Slope = 4:(8) — y:(1/4)
Curvature = [y¢(8) — y:(2)] — [y:(2) — y:(1/4)]

As seen in Figure 3.4, the raw values of the yield curve factors do not offer much insight on their own, but
they will be useful later in decomposing the spot rate and in multiplicative regression hedging.
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Figure 3.4: Yield curve factors over time.



Chapter 4

Question 1

Question:

What are the time-series properties of the spot rates y;(1), y+(5), and y.(10) 2 Report their summary statistics,
including mean, standard deviation, skewness, kurtosis, and the first four autocorrelation coefficients, and
the correlation matrix of the spot rates. Comment on your results. Also plot them and comment on the time
series patterns.

In this question, data for the y:(1), v:(5), and y:(10) spot rates is required. This has been calculated in
Section 3.1, and the results from there are used here.

4.1 Summary Statistics

Reported in Table 4.1 are summary statistics on the three spot rate series. Unsurprisingly, the average spot
rate increases with the maturity, but interestingly, the shorter maturity spot rates have higher volatility. The
kurtosis of all three are less than that of a normal distribution, but the 1-year maturity is very close. All
three are right-skewed, with longer right tails, which makes sense considering extremely high interest rate
periods do happen, but are rare. The histograms in Figure 4.1 are a nice visual confirmation of the results in
the table. The skewness is clear, and the higher standard deviation for lower maturities might be attributed
to the higher density at the extreme tails.

Table 4.1: Summary statistics for 1, 5, and 10 year spot rates.

Maturity Mean Standard Deviation Kurtosis  Skewness
1 0.0480538 0.0375029 2.913858 0.6505396

5 0.0566592 0.0345430 2.567191  0.5659543

10 0.0627654 0.0314939  2.586681 0.5793584

10



4.2. AUTOCORRELATIONS 11
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Figure 4.1: Spot rate distributions

4.2 Autocorrelations

The first four autocorrelation coefficients of the 3 series are reported in Table 4.2, along with a plot of the
ACF for the entire series in Figure 4.2. Each of the series are highly autocorrelated, with autocorrelation
above 0.6 out past the 25th lag. By looking at the entire ACF, one can note that the amount of and
persistance of autocorrelation increases in maturity.

Table 4.2: Autocorrelation coefficients for 1, 5, and 10 year spot rates.

Maturity Lag 1 Lag 2 Lag 3 Lag 4

1 0.9878979 0.9697433 0.9527499 0.9411647
5 0.9911143 0.9791933 0.9686252 0.9599084
10 0.9906205 0.9793246 0.9691974  0.9606667




CHAPTER 4. QUESTION 1
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Figure 4.2: ACF for the 1, 5, and 10 year spot rates

4.3 Correlations

Correlations between the 1, 5, and 10 year spot rates are reported in Table 4.3. It is clear that the the series
are highly correlated. This should not be surprising whatsoever. Intuitively, the 1 year is more correlated
with the 5 year than with the 10 year, but the overall correlations are so high that this likely has no significant

meaning.

Table 4.3: Correlation coefficients for 1, 5, and 10 year spot rates.

Maturity 1 5 10

1 1.0000000 0.9783620 0.9539364
5 0.9783620 1.0000000 0.9932312
10 0.9539364 0.9932312 1.0000000

4.4 Time Series Visualizations

A look at the time series of the three series confirms the highly autocorrelated and correlated nature of the
three series. 1 year spot rates are almost always below the longer maturity rates, as one would expect. Since
2010, 1 year spot rates have been incredibly low, but have started to pick back up in the last few years.
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Figure 4.3: A look at the 1, 5, and 10 year spot rates over time



Chapter 5

Question 2

Question:

Can the three yield curve factors explain the time-series variation in spot rates? Regress y:(1) on a constant
and X and comment on the regression statistics. Perform the same analysis for y:(5) and y:(10).

In this question, data for the y:(1), y+(5), and y:(10) spot rates is required along with the yield curve factors,
X;. These have been calculated in Section 3.1 and Section 3.5, and the results from there are used here.

5.1 Regression

The following regression was run on every spot rate series:

ye(n) = a(n) + B1(n)Level, 4+ B2(n)Slope, + B3(n)Curvature; + e:(n)
Using the concept of multiple models from the book, R 4 Data Science, implementing these regressions in
R is incredibly straightforward. The general concept involves two steps:

1) Split the data set of all 14 maturities into 14 groups, stored in a nested data frame.
2) For each group, run the linear model above and store the result.

The final result is a compact single data frame that contains the 14 resulting models along with the original
data, indexed by the maturity.

## # A tibble: 14 x 3

## maturity data model

#i# <dbl> <list> <list>

## 1  0.0833 <tibble [459 x 5]> <S3: 1m>
## 2 0.25 <tibble [459 x 5]> <S3: 1m>
## 3  0.917 <tibble [459 x 5]> <S3: 1m>
# 4 1 <tibble [459 x 5]> <S3: 1m>
## 5 2 <tibble [459 x 5]> <S3: 1m>
## 6 2.92 <tibble [459 x 5]> <S3: 1m>
# 7 3 <tibble [459 x 5]> <S3: 1m>
## 8 4.92 <tibble [459 x 5]> <S3: 1m>
## 9 b <tibble [459 x 5]> <S3: 1m>
## 10 6.92 <tibble [459 x 5]> <S3: 1m>
## 11 7 <tibble [459 x 5]> <S3: 1m>
## 12 8 <tibble [459 x 5]> <S3: 1m>
## 13 9.92 <tibble [459 x 5]> <S3: 1m>
## 14 10 <tibble [459 x 5]> <S3: 1m>

14
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5.2. ONE YEAR SPOT RATE 15

5.2 One Year Spot Rate

As seen in Table 5.1 and Table 5.2, all estimates for the 1 year spot rate model are highly significant, and
the Adjusted R? is nearing 100%, suggesting that the model can explain essentially all of the variation in the
spot rate. Considering that the constructed yield curve factors include y:(2) as the level effect, this should
not be surprising as all of the series are highly correlated. The very high statistic on the level coefficient
supports the claim of its importance.

Table 5.1: Regression results: One year spot

Term Estimate Standard Error Statistic P-Value
Intercept 0.001014021 0.0001280165 7.921022 1.8e-14
Level 0.989941953 0.0015226534 650.142657 0.0e+00
Slope 0.264774017 0.0034323179 77.141460  0.0e+00

Curvature -0.428350107 0.0057618892  -74.341954  0.0e+4-00

Table 5.2: Regression R?: One year spot

R Squared R Squared Adj Residual Std Error
0.9995224 0.9995193 0.0008223

A chart of the realized VS predicted time series for each model confirms how well the variation is explained,
with essentailly perfect matching of the realized series. It is important to remember that this model is not
predicting out-of-sample future rates, and is simply used to gather intuition about past rates. Nevertheless,
it is interesting to see how well the yield curve factors explain the variation.

One Year Spot
0.15

0.10
0.05
0.00
Five Year Spot

0.15 ) .
Realized/Predicted

— Predictions
0.05 — Realized

0.10

Spot Rate

0.00
Ten Year Spot
0.15

0.10
0.05

0.00
1980 1990 2000 2010 2020

Figure 5.1: In-sample realized VS predicted spot rate series
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5.3 Five Year Spot Rate

The model for the 5-year rate is similar to the 1-year rate in terms of explanatory power. The level coefficient
is slightly higher than for the 1-year, and is >1, which makes sense considering that the 5-year is generally
higher than the 2-year spot rate used to represent the level effect. The slope is more than triple that of the
1-year, suggesting that an increase in the slope has a larger impact on the value of the 5-year curve than it
does on the 1-year.

Table 5.3: Regression results: Five year spot

Term Estimate Standard Error Statistic P-Value
Intercept  -0.001326488 0.0001178948 -11.25146 0
Level 1.010756975 0.0014022642 720.80351 0
Slope 0.862622600 0.0031609403 272.90063 0
Curvature -0.237885069 0.0053063231  -44.83049 0

Table 5.4: Regression R?: Five year spot

R Squared R Squared Adj Residual Std Error
0.9995226 0.9995194 0.0007572

5.4 Ten Year Spot Rate

Finally, the 10-year model performs similarly to the 1 and 5-year models. One interesting thing to note
about the 10-year model is that the sign on the curvature coefficient is opposite that of the 1 and 5-year
models.

Table 5.5: Regression results: Ten year spot

Term Estimate Standard Error Statistic P-Value
Intercept  0.001285415 9.632731e-05 13.34424 0
Level 0.990119282 1.145736e-03  864.17722 0
Slope 1.041806029 2.582683e-03  403.38126 0
Curvature 0.101703126 4.335593e-03 23.45772 0

Table 5.6: Regression R?: Ten year spot

R Squared R Squared Adj Residual Std Error
0.9996166 0.9996141 0.0006187
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5.5 Decomposing the Spot Curve

Although not specifically asked for, it might be interesting to decompose and plot the spot curve at a few
particular points in time. The procedure for this involves the following manipulations:

1) For month m, extract the spot rate at every available maturity for that month.

2) For month m, filter the yield curve factors down to that month, and multiply each maturity’s regression
coefficients by the corresponding yield curve factor. This gives the contribution of each factor for that
month and each maturity.

3) Join the two data sets and chart them to view the decomposed spot rate for any month.

This procedure was streamlined into a single function, parameterized by the month to allow for easy plotting
and comparison of multiple months. For example, the decomposed spot curve for January 2012 and January
1981 are shown side-by-side in Figure 5.2. January of 1981 was definitely an interesting time period! The
spot rate is essentially inverted, with lower maturity bonds having higher spot rates than longer maturity
bonds.
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Figure 5.2: Decomposed spot rate for January of 2012 and 1981

5.6 Coefficient Stability

Another question worth asking is how stable the coefficients are throughout time. We can test this by
running the same regression as before, but with a rolling window. This works by calculating the regression
spot_rate ~ level + slope + curvature for the first 100 months, then shifting forward 1 month and
dropping the last day, calculating the regression again, and repeating this for the length of the series. The
rsample package provides a number of helpers for doing analysis exactly like this. The procedure for this is:

1) Split the data into 14 nested groups by maturity, as done in Section 5.1.

2) Further split each of the 14 groups into 359 rolling subsets of 100 days each using rolling_origin()
from rsample.

3) For each maturity, and for each rolling split, run the regression from 5.1. This results in 5026 regressions,
which, on this 4-core computer, can be run in parallel in ~8 seconds.

When the procedure has been run, a natural next step is to pick some of the 14 maturities and look at the
stability of each coefficient over time. For example, the 1, 5, and 10 year coefficients over time are shown
side-by-side in Figure 5.3. Most of the coeflicients are fairly stable over time, with the exception of curvature.
The curvature of the 1 year has begun to rise up from -0.5 to around -0.25 in recent years. This change
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over time is not refected in the static -0.428 curvature estimate we get from running the model over the full
time period, and might offer other interesting insights or opportunities for trading strategies. The 10 year
curvature coefficient follows a similar pattern, but the 5 year curvature follows the opposite trend, decreasing
in recent years.

One Year Coefficients Five Year Coefficients Ten Year Coefficients
Intercept Intercept Intercept
1.0 1.0 1.0
0.5 0.5 0.5
0.0 0.0 0.0
-0.5 -0.5 -0.5
Level Level Level
10 e~ — 10 ————— 1.0 —\
0.5 0.5 0.5
0.0 0.0 0.0
@ -0.5 -0.5 -0.5
©
.E Slope Slope Slope
%2}
w 1.0 1.0 1.0

0.5 0.5 0.5
—_—  T~———
0.0 0.0 0.0
-0.5 -0.5 -0.5
Curvature Curvature Curvature
1.0 1.0 1.0
0.5 0.5 0.5
_—
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-0.5 N—/‘ -0.5 -0.5
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Figure 5.3: Coefficient stability for 1, 5, and 10 year spot rates. 100 month rolling window.



Chapter 6

Question 3

Question:

Perform the “out-of-sample” hedging exercises where np = 3. Split the sample into two halves, such that
To = 2T'. Begin with the T-th month, calculate wr (1), wr(5), and wr(10) for each hedging strategy, and save
er+a(np). Move forward and repeat the process each month, and calculate the root mean squared hedging
error (RMSHE) for each strategy:

1
RMSHE = [ > eria(ng)™?

Report your results and evaluate the performance of the hedging strategies.
Implementation details:
This chapter is broken into:

e 3 sections devoted to creating the modeling functions

e 1 section for creating a hedging error calculation function

e 1 section for creating an “interface” to the models and error calculations
e 1 section for running the models through the interface

¢ 1 section for reviewing model performance

The data for the y:(1), y:(3), y:(5), y:(7), and y(10) spot rates is required to calculate the durations for
the zero coupon bonds used in the hedging exercises. Also required are the yield curve factors and excess
returns. These have all been calculated in Section 3, and the results from there are used.

The models developed below will be structured in a way so that they can all be fed with data from the same
data set. To accomplish the rolling out-of-sample technique, the rsample package was used. Specifically, the
rolling origin() function was utilized which allows easy splitting of data into rolling sets of 230 months,
which is the T value corresponding to half of the data.

6.1 Modified / Macaulay Duration

The first two strategies involve creating duration matched barbells using 1-year and 10-year zero coupon
bonds to match the duration of a 3-year or 7-year bullet. Since the strategies are essentially the same, one
modeling function is used for both, model_duration(), with an argument to select whether to use modified
or macaulay duration. The duration is calculated using the duration() function in the ratekit package
and the barbell weights are calculated with the barbell_weights() function.

19
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The function is created in such a way that it accepts a single split from the total data frame, and calculates
the weights for just that one split. The weight for a 5-year zero is included to be consistent with the other
models, but is set to 0.

6.2 Simple Regression Based Hedging
The regression based hedging method involves the regression:

The R function 1m() is used to run the regression, and the weights are extracted and returned in the same
format as the duration models. This is all wrapped into a modeling function, model_regression().

6.3 Multiplicative Regression Hedging

The multiplicative regression follows the model:

ERt(nh) = Qt(l, Xt_A)ERt(].) + gt(E), Xt_A)ERt(E)) + 9t(10, Xt_A)ERt(].O) + Ut('flh)
where 60;(n; X;_a) depends on the yield curve factors as:
0:(n; Xi—n) = ar(n) + by(n)Level;_a + c¢(n)Slope, o + di(n)Curvature;_a

Once the models are fit, the weights at time ¢ can be calculated as 6; values using the yield curve factors at
t:

The entire procedure is wrapped into model_multiplicative_regression(), which, consistent with the
other model_*() functions developed so far, accepts a single rolling split, along with the type of bullet (3 or
T-year), and returns the weights.

6.4 Error Calculation

Hedging error for the weights set at time ¢ are calculated at time t + A as:

Et+A = wt(l)ERt+A(1) + U)t(5)ERt+A(5) + wt(lo)ERt+A(10)

These weights are then aggregated using RMSHE to determine overall model performance.

6.5 Model Selection Interface

A practical way to call all of the above models would be through an interface function that take as parameters:
the data, the model to run, and the bullet to hedge against. Such a function was developed, and returns a
data frame of the model type, the bullet used, the date of the error calculation, the weights, and the hedging
errors.
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6.6 Model Application

Finally, a data frame of function calls and parameter sets is created to easily iterate over all of the models.
This data frame has a very compact form:

invokable

## # A tibble: 8 x 2

## £ params

## <chr> <list>

## 1 apply_model <list [3]>
## 2 apply_model <list [3]>
## 3 apply_model <list [3]>
## 4 apply_model <list [3]>
## 5 apply_model <list [3]>
## 6 apply_model <list [3]>
## 7 apply_model <list [3]>
## 8 apply_model <list [3]>

The first column contains the function interface, apply_model(). FEach element of the params column
contains the data to be used in the model, the model type, and the bullet to hedge against.

invokable$params [[1]]

## $.data
## # Rolling origin forecast resampling
## # A tibble: 229 x 2

##  splits id

## <list> <chr>

## 1 <83: rsplit> Slice001
## 2 <83: rsplit> Slice002
## 3 <83: rsplit> S1lice003
## 4 <83: rsplit> Slice004
## 5 <83: rsplit> S1lice005
## # . with 224 more rows
##

## $model

## [1] "modified_duration"
##

## $bullet

## [1] "3"

6.7 Model Results

Table 6.1 displays the RMSHE results from each model. The regression methods significantly outperformed
the duration based models, with much lower RMSHE. Among the duration models, Macaulay duration did
marginally better, but the statistical significance is likely negligible. Among the regression models, the
multiplicative regression did slightly better than the simple regression with the 3-year bullet and slightly
worse with the 7-year bullet. The results are so close, however, that I am inclined to conclude that the
simpler regression model is the best and most parsimonious model of the four. There is little to indicate
that longer maturity bullets are harder to hedge than shorter maturity bullets. In fact, with the regression
models, the opposite seems to be true.
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Table 6.1: Hedging Model Results

Model Bullet RMSHE
Macaulay 3 0.0038994
Macaulay 7 0.0039961
Modified 3 0.0039390
Modified 7 0.0040058
Multipl. Regression 3 0.0008060
Multipl. Regression 7 0.0007763
Regression 3 0.0008178
Regression 7 0.0007663

Because a rolling model was fit, a similar analysis can be performed as Section 5.6 where the stability of the
coefficients over time was analyzed. In this case, the assignment of hedging weights by the models over time
can be analyzed rather than just the coeflicients. Some interesting insights can be gathered from Figure
6.1. Keeping in mind that duration models are only allowed to assign weight to a 1 year and 10 year zero,
it is interesting to see how stagnant the weighting is between the 1 year and 10 year. The fact that the
model essentially does not have the flexibility to vary the weights much over time likely contributes to its
poor performance. The duration model also never shorts, which likely helps the regression models. The
weightings in the duration models do make sense, with more than 50% being assigned to the 1-year bond
to hedge the 3-year bullet, and more than 50% being assigned to the 10-year the hedge the 7-year bullet.
In the regression models, there is an implicit risk free instrument that weight can be assigned to, so a 4th
row in the figure is included to incorporate that. The simple regression model only shifts weights around in
periods of high stress, 2001 and the jump around 2008 being two examples, but even so, the weightings are
surprisingly stable over time. This is especially apparent when contrasted with the multiplicative regression.
Weights are highly varied over time, but the performance gain for this is limited as seen in the RMSHE
results, questioning the need for the complex model.
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Figure 6.1: Hedging weight assignment over time

Another way to view the weights over time is by stacking them. This is done in Figure 6.2 and provides
another unique view into the change in the total weight distribution over time. This view confirms the
stagnant weights in the duration models, but also offers some other new insights. In the regression models,
hedging the 3-year bullet requires shorting the 10-year and the risk free, while hedging the 7-year bullet only
required hedging the 1-year bond. This view also further demonstrates the wild swings in the multiplicative
regression, for questionable performance gains.
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Figure 6.2: Stacked weight assignment over time



Chapter 7

Conclusion

In this project, spot rates from the Federal Reserve were analyzed along with their corresponding zero
prices and returns over time. In addition, multiple hedging models were implemented and analyzed. The
simple regression hedging model outperformed the two duration models, and was on par with the much more
complicated multiplicative regression model. This leads me to conclude that the simple regression model is
the most useful out of the four.

I was particularly impressed with how well the yield curve factors explained the variation in the rates for other
maturities. Using linear combinations of certain maturity spot rates seems to create powerful explanatory
variables for other maturities.

Further research could be done by including transactions costs in hedging performance calculations. This
would likely penalize the multiplicative regression even further. Additionally, one could include thresholds
that had to be hit before a certain recommended change in the weights was actually made. This could combat
the transaction costs and would benefit the simple regression method along with the duration methods.
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